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COMMENT 

A finite-size scaling study of the 4~ Ising model 
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Laboratory of Nuclear Studies, Cornell University, Ithaca, N Y  14853, USA 

Received 16 March 1987 

Abstract. We study the finite-size scaling behaviour of the susceptibility and of the second 
derivative of the susceptibility with respect to the magnetic field at the critical point for 
the four-dimensional Ising model with zero magnetic field using Monte Carlo techniques. 
The finite-size scaling exponents are found to be in good agreement with the form predicted 
by mean-field theory critical exponents. 

Finite-size scaling techniques (for a good introduction and references see [ 11) have 
become a very powerful method of analysing the critical behaviour of statistical 
mechanical systems. This is particularly true when they are combined with results 
obtained by analytical methods. In this study we investigate the finite scaling properties 
of the magnetic susceptibility and its second derivative with respect to the magnetic 
field at the critical point for the four-dimensional Ising model. We will use the known 
value of the critical temperature obtained from high-temperature series expansions to 
fine tune our Monte Carlo measurements, and check the theoretical expectations for 
the finite-size scaling exponents and the possibility of using them to extract information 
about the critical properties of the system. Because the critical exponent y is exactly 
known in this model [2], only two more critical exponents need to be measured. If 
hyperscaling is satisfied, this can be done in an economical way, as explained below, 
by analysing the finite-size behaviour of the magnetic susceptibility. If hyperscaling 
is not satisfied, then all the critical exponents except v and 77 can be obtained in that 
manner. 

The four-dimensional king model is a system of special interest. It is generally 
accepted that its critical properties are given by mean-field theory, with possible 
logarithmic corrections. This is what renormalisation group calculations [3] suggest, 
giving also detailed predictions about the logarithmic terms modifying the power law 
singularities. In four dimensions, and only in four dimensions, the mean-field theory 
exponents satisfy the hyperscaling relation, whose validity is implicitly assumed in the 
renormalisation group approach: 

-2A + dv + y 
w *  = = O  

v 

where A, v and y are the usual critical exponents. In general, one has the inequality 
w* 2 0 [4]. This exponent w *  is the relevant quantity to discuss the issue of the triviality 
of the continuum field theories obtained at the critical point, because the renormalised 
coupling constant behaves when T + T, as: 
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where x and x") are respectively the susceptibility and the second derivative of the 
susceptibility at zero magnetic field. A violation of the hyperscaling relation (1) will 
automatically imply a trivial (Gaussian) continuum theory and indeed this is what 
happens in d > 4. The common belief in four dimensions, where mean-field theory 
exponents satisfy ( I ) ,  is that logarithmic corrections to equation ( 2 )  are responsible 
for the (almost proven) triviality of the continuum theory. This mild way of vanishing 
g ,  when T-+ T, is in contradiction with some Monte Carlo calculations [5], which 
actually see gR go towards zero very fast as the temperature approaches its critical Value. 

Baker and Kincaid [ 6 ]  have analysed high-temperature series expansions for 
different lattice types using integral and Pad6 approximants, and have obtained the 
following value of U * :  

(3) 

which implies strong triviality, and is in conflict with mean-field theory exponents. 
Baker suggested that the renormalisation group calculations may not apply to the 
four-dimensional Ising model. On the other hand, Gaunt and co-workers [7,8] assuming 
the validity of the mean-field exponents and thus of equation ( l) ,  have found con- 
sistency between the high-temperature series expansions and the logarithmic corrections 
predicted by the renormalisation group. Aizenman and Graham [2] have rigorously 
proven that there are at most logarithmic corrections to the mean-field theory prediction 
for the behaviour of the magnetic susceptibility. Furthermore, they showed that if 
these corrections are present then the continuum limit is trivial, although the way in 
which gR goes to zero is not specified, only bounded by a logarithmic term, and a 
violation of hyperscaling is not ruled out. 

It is, therefore, of interest to see if one can obtain information about the critical 
behaviour of the theory using numerical methods, in order to support or reject the 
standard picture. In this comment we study the finite-size scaling [ 13 behaviour of the 
susceptibility x and the second derivative of the susceptibility x(" at zero magnetic 
field at the critical temperature, using Monte Carlo techniques in hyper-cubical lattices 
of linear size L with periodic boundary conditions. For the critical temperature we 
use the known value obtained in series expansions [7]: 

pc = -= 0.149 65 * 0.000 05. 

The accuracy of this value is enough for our simulation. 

infinity as [ l ] :  

VU* = 0.302 f 0.038 

J 
(4) 

kTC 

The values of x( T,, L )  and x"'( T,, L )  diverge when the size of the lattice go to 

( 5 7 )  

( 5 b )  

Under certain hypotheses which do not require the validity of equation ( l ) ,  Binder er 
a1 [9] have found the following relation between the finite-size exponents A ,  and A 2  
and between them and the critical exponents y and p :  

,Y( T,, L) - L". 

x("( T,, L )  - LA>. 

A 2 =  2 A 1 + d  ( 6 a )  

Y + P  
Y + 2 P  

A ,  = 2d--  d, 
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If equation (1 )  is satisfied, then the finite-size exponents A I  and  A 2  take the more 
familiar forms [l]: 

A i = Y / v  (7a )  

A 2  = ( 2 A +  y)/ V. 

The 'mean-field theory' values for A I  and hz  are 2 and 8 respectively. If the hyperscaling 
relation (1) fails, then at  least two critical exponents must differ from their mean-field 
theory values. If A ,  and  A z  still take the values 2 and 8, then the exponent beta must 
also take its mean-field theory value and only v (and 7 = 2 - y/ v) can deviate from 
their mean-field theory prediction. We will check numerically the validity equation of 
(6a). Then, using (6b) and (7), together with the known exact result of y = 1 [ 2 ] ,  we 
can estimate bounds to the deviation of the critical exponents from their mean-field 
theory values. 

For our numerical simulations, we have used hypercubical lattices with linear sizes 
L from 3 to 10. A standard heat bath method was used to update the spins. For each 
lattice size, we measured x and x") by generating several Markov chains of configur- 
ations. Each of them starting with a random initial spin configuration and  consisting 
of 5 x lo3-lo4 Monte Carlo sweeps for thermalisation followed by 104-105 sweeps for 
measurement, each two measurements separated by 20-200 sweeps. This allowed a 
better understanding of the statistical errors involved in the measurement. 

Specifically, our definitions of x and x(') are: 

where m represents the magnetisation per site. These definitions coincide up to factors 
of pc with the standard definitions. The minus sign in front of the left-hand side in 
(8b)  will assure a positive value for x('). The results of our measurements are given 
in table 1 ,  and are plotted in figures 1 and 2. The main source of the errors is statistical 
in nature. From these figures it is apparent that the asymptotic region (5a, 6)  is reached 
very quickly (within the accuracy of the measurements), even for lattices as small as 
L = 5. From the values of ,y and x ( ~ )  in table 1,  our  best estimates of the values of A I  
and A 2  are: 

A I  = 1.96*0.06 

Table 1. Measured values of ,y and X I * '  for different values of the size of the lattice. 

16.310f 0.006 
33.22 * 0.03 
55.8 * 0.3 
84.8 * 0.8 

120.0* 1.7 
159.7 f 2.2 
204 * 6 
258 f 8 

0.02546 * 0.000 05 
0.330*0.002 
2.23 * 0.04 

10 .6 i0 .2  
39.0f 1.3 

116.0 * 6.1 
295 f 25 
709 f 40 
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Figure 1. Magnetic susceptibility x at zero magnetic field defined in equation ( 8 a )  at the 
critical temperature as a function of the lattice size L. 
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which are in very good agreement with the prediction of equation ( 6 a )  [ 9 ] .  They are 
also consistent with their ‘mean-field theory’ values of 2 and 8. The errors quoted in 
equation (8) are estimated errors and not rigorous bounds. Using equation ( 6 b )  together 
with the exact value y = 1 and the scaling relations, which do not assume the validity 
of hyperscaling, we obtain for the critical exponents a, p, 6 and A :  

p = 0.52 f 0.03 [f] ( 9 0 )  

S = l + y / P  =2 .92*0 .12[3 ]  ( 9 c )  

A = /3 + y = 1.52 * 0.03 [+I ( 9 4  

where inside the brackets we have indicated their mean-field theory values. If we 
further assume the validity of equation ( 1 )  then we find for Y and r]: 

v=0.510*0.016 [ 4 ]  ( l o a )  

77 = 2 - y /  v = 0.04*0.06 [ O ]  ( l o b )  

also consistent with their mean-field values. The Monte Carlo data for the specific 
heat Cv at the critical temperature is presented in figure 3 .  It is also consistent with 
a being zero or very small, although it would not be correct to extract more precise 
conclusions from it than those obtained in (9b). The fact that C, diverges very slowly 
with the size of the lattice means that one will need data from bigger lattices and more 
statistical accuracy to get a better estimate or bound for a from a direct measurement 
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Figure 3. Specific heat at the critical temperature as a function of the lattice size L. 
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of C,. However, if we assume a logarithmic divergence of C,(T,)  when the size of 
the lattice goes to infinity (i.e. assuming a =O): 

then our data are consistent with a value of p = 0.3-0.45. 
In summary, we have found for the finite-size scaling behaviour of the susceptibility 

and its second derivative with respect to the magnetic field, at zero magnetic field, 
very good agreement with the expected scaling (5) and ( 6 a ) ,  with critical exponents 
consistent with those given by mean-field theory. This is in agreement with the 
renormalisation group results for the critical exponents, which in turn imply the 
hyperscaling relation (1). We have also found a very fast approach to the large-l  limit 
for these quantities, even for sizes of the lattice relatively small. We thus believe that 
it will be possible to improve the accuracy of the results presented here by concentrating 
on increasing the statistics of the measurements in small lattices (of the order 10). 

This work was orignated during a stay at Fermilab in summer 1986. I would like to 
thank this group for their hospitality. This work is supported in part by the NSF. 
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